Quantcast
Channel: strandbeest – Hackaday
Viewing all 35 articles
Browse latest View live

3D printed Strandbeests made to order

$
0
0

strandbeest

If you love Strandbeests but don’t have the patience to build your own, Dutch artist [Theo Jansen] has you covered. You might remember him from a story we ran last year, detailing his awesome beach-going strandbeest creations.

His beach walkers are typically built out of PVC conduit and plastic tubing, towering over their creator. For the time being however, he is focusing his work on a much smaller scale. [Theo] has recently teamed up with a 3D printing shop in order to offer miniature working replicas of his creations to the public. The current models can be had for $105, which seems like a pretty steep price to us. Then again, these models come fully assembled and are composed of 76 individual pieces, which is nothing to sneeze at.

That said, considering how easily a Strandbeest can be created with a stack of thick paper and some free time, we imagine that an enterprising individual could build one using readily available plastics at a fraction of the cost. Anyone out there up for giving it a shot?

Continue reading to see a video of the Strandbeest creation process.

[via Gizmodo]


Filed under: misc hacks

Building a Strandbeest

$
0
0

flexing-jansen-mechanism

[Jeremy] may have given up on his big hexapod project, but that doesn’t mean he’s out of the world of legged robots just yet. He’s embarked on another project, much more elegant and beautiful than a simple hexapod. This time, he’s building a Strandbeest, the same machine designed by walking machine extraordinaire [Theo Jansen].

Coming up with the correct lengths and joints of a Strandbeest leg linkage isn’t something you can just pull out of your head, so after [Jeremy] found the inspiration for his new project he dug into the related literature on Strandbeest legs. He found the work of [Dominique Studer] and set to work making his own mechanical legs.

Right now, [Jeremy] has a prototype of the Strandbeest leg linkage made out of wood. It still needs a little bit of work, but soon enough there will be a PVC pipe Mountainbeest trolling the backwoods near [Jeremy]‘s house.



Filed under: robots hacks

Crab-ble – A Table That Walks

$
0
0

124_dsc0417-xl2

Do you have a heavy kitchen table? Wish you could move it all by yourself? [Ekaggrat] set out to design one for this year’s Beijing Design Week back in September.

It’s based off of the awesome Strandbeest design by [Theo Jansen], and it looks great. [Ekaggrat] made several prototypes of the “Crab Table” out of ABS plastic, and was planning to make a full size one using bamboo rods, which were the theme of the design week. Unfortunately the team ran out of time and was not able to make the full scale model. The prototypes walk around all by themselves with geared DC motors, but the plan for the full size one was to simply be able to push it.

We’ve seen lots of walking tables before, but there’s just something about the mechanical beauty of this design that we love. It’d be heavy — but imagine it in chrome! Maybe just the plastic could be plated… Stick around after the break to see it scuttle about!

Now the only problem we see with giving your table crab legs is that it might just run off with your food since it’s shellfish…


Filed under: home hacks

Building The Mountainbeest

$
0
0

mounainbeest-pic

Builder extraordinaire and Hackaday alum [Jeremy] was asked by a friend about “doing something really crazy” for his local Makerfaire this year. That Makerfaire clock is ticking down, and not wanting to build awesome from scratch, referred his friend to a few of the temporarily shelved projects from the last year. The winning incomplete build was the Mountainbeest, a four-legged mechanical walker inspired by [Theo Jansen]‘s Strandbeest.

We’ve seen the beginnings of the Mountainbeest before, starting with [Jeremy] building the linkages for one leg. This build turned into two legs and now it’s a full-on quadruped, theoretically capable of rambling over the lush mountains in [Jeremy]‘s backyard.

The plan now is for [Jeremy] to get is Beest walking with the help of windshield wiper motors left over from a failed hexapod build. He’s not ging all the details yet, but it looks like the power train will be made out of bike parts. Video of the current state of the project below.


Filed under: robots hacks

Fixing Misaligned PVC With Kerf Bends

$
0
0

misalignment-coupler

Our old pal [Jeremy Cook] is doing his own remix of [Theo Jansen]‘s Strandbeest, and like the original, he’s using PVC pipe. Unlike the originals, he’s powering it with motors, not wind, and this has caused a few problems in transmitting mechanical power through a piece of PVC. Nothing is perfect, and in a few points in the legs movement the shaft shakes violently. One motor was lost and another nearly so before [Jeremy] came up with a flex coupler made from PVC.

The technique [Jeremy] is using has seen a lot of use with people building laser cut enclosures. It’s called kerf bending, and it works simply by cutting a few slits in a panel that allow it to bend slightly. This technique was replicated by [Jeremy] on a miter saw, cutting eight slots halfway through a one inch PVC pipe, with each successive cut offset 90 degrees.

The new design works well for transmitting power, and he’s not ruining motors any more. Check out the video below.


Filed under: robots hacks

MountainBeest – A Theo Jansen Creature Comes Alive in My Garage

$
0
0

About a year ago, a member of my family sent me a video featuring [Theo Jansen's] StrandBeest, knowing that I was interested in all kinds of wacky and hackish inventions. My initial reaction was something to the effect of “wow that’s a neat device, but that guy is a little crazy.” For better or worse, the idea that this was an incredible invention turned over in my head for some time. Eventually, I decided that I needed to build one myself.  Apparently I’m a little crazy as well.

Theo’s original beest runs on a complicated linkage system powered by wind. He was nice enough to publish the linkage lengths or “eleven holy numbers,” as he calls him at the bottom of this page. He doesn’t, however, really explain how the connections on his PVC power transmission system work, so I was left to try to figure it out from his videos.  As you’ll see from build details and video to follow, this isn’t trivial. Keep reading past the jump to learn the adversity that I encountered, and how it was overcome in the end.

The Build Begins

For reasons that I’m not entirely sure of, I started building the leg linkages out of wood instead of PVC pipe. Perhaps it was this four-legged miniature Jansen-style walker that inspired it.  Some of the linkages were scaled directly from this design. That’s also likely how I decided that it might be possible to walk my StrandBeest version around with four legs. That or possibly this awesome simulation. Given how much effort it took to make each leg, the fewer the better from the perspective of getting it finished.

To begin with, I was never sure I’d finish more than one leg, but after trying out the process on the first linkage set, as seen on [HAD], soon I was testing two legs. Finally it was on to four legs linked together with a central PVC shaft — also seen on [HAD] and in the video below.

I thought that was pretty cool, so the build seemed to be done for the time being. I literally hung it up in my garage to see if I could think of anything better to do with it.

Inspiration to Finish the Project

Months later, I was contacted by [Jay], who recruits for the Columbia, SC Maker Faire, about doing something for the show. My dormant ‘Beest, now dubbed the [MountainBeest], seemed like a great candidate. [Jay] volunteered that they had a winch available (why not?) to hoist the [MountainBeest] up and down spider. This was great, as I had serious doubts about its ability to walk on its own.

Although I could have probably hooked up a series of cables to actuate the legs remotely, this didn’t seem quite good enough. Electronic remote control seemed like a better idea, and fortunately I had a windshield wiper motor and controls left over from a failed “giant hexapod” project that [HAD] featured in 2012.

Some Issues with the Build

chain-sprocket

The mechanical build was simple enough, but power transmission with PVC pipe is getting into somewhat uncharted waters for me. My first idea was to use sprocket gears off of a bike that I converted to single speed, and windshield wiper motors to power the legs. This idea had some potential, but I was supporting the driving gear quite poorly.  Additionally, the wiper motors tended to go faster and start more violently than the [MountainBeest] liked. As seen here, even after upgrading to a larger single speed chain, things didn’t stay together.

My “custom” single speed bike, however, looks awesome with its new chain. It’s good to have a backup plan.

The [MountainBeest] backup plan was to use one slower motor on each set of two legs. This would get rid of any pesky chain issues, and theoretically allow the ‘beest to turn when walking. It took some work, including modifying the frame and coming up with an interesting motor mounting solution seen in the picture below. It did work, however, and that counts a success in HaD land.

wooden-motor-mount

One continuing issue I’ve had with the extremely low geared motors I was using, is that at certain points in the mechanism’s travel, it tends to put a huge amount of torque on the shaft. In order to fight this, I came up with a PVC coupler that absorbs some shock and allows it to flex as seen on [HAD] here. These are known in their more traditional settings as a “beam” or “helical” coupling.  My PVC version is seen in the video below.

Final Design

After solving (or at least mitigating) most of the mechanical issues with my “walker,” the electronics were fairly simple. I used a four-channel radio transmitter with a PWM relay switch from Servocity.  This was able to handle the DC motors nicely, despite possibly being overkill. After wondering what I could do with the other two channels, I remembered that I had a Pan/Tilt mechanism already built.

mountainbeest-finishing

After attaching the camera mount to the polycarbonate shell, it was simply a matter of plugging the servos in.  In a few easy steps I had a ready-made GoPro mount to add sight to my creation!

Below is a video of it completed in the garage, and there’s more information on the final build here.  Unfortunately, the torque required to actually make the legs walk was too much for the little motors I was using.  It’ll make a great display though, and actually walking will be a good goal if I ever decide to make revision 1!

So sometimes one just needs a little push to actually finish a project! Hopefully my [MountainBeest] can make a good showing at the Columbia, South Carolina Maker Faire this year. I’m certainly looking forward to it. If you happen to be in the area on June 14th this year, or want to make the trip, be sure to stop by and say hello!

Full disclosure: I’ve received promotional consideration on some parts used in this project not in connection with this article.


JeremySCook twitter accountJeremy Cook is a manufacturing engineer with 10 years experience as his full-time profession, and has a BSME from Clemson University. Outside of work he’s an avid maker and experimenter, working on everything from hobby CNC machinery, to light graffiti, and even the occasional DIY musical instrument. When he’s not busy creating (or destroying) something, he writes for his blogs JcoPro.net and DIYTripods.com.


Filed under: Featured, misc hacks, robots hacks

Wind Powered Strandbeest Could Roam the Land Indefinitely

$
0
0

3d printed strandbeest

We have to admit, Strandbeests are one of our favorite mechanical inventions of recent years — many-legged, life-like mechanisms that walk around? Awesome. [Eric] wanted to design something really cool — so he decided to build a turbine attachment for [Theo Jansen's] Strandbeest — the AG5 & AG7 models specifically.

If you’re not familiar, the Strandbeest is a mechanical contraption that actually walks around. It’s been developed by [Theo Jansen] for years and has been built in many variations by other people over the years. [Theo] even gave a TED talk on it back in 2007.

The very idea of the Strandbeest is to have it move by itself with autonomy — no electronics allowed! [Theo] has designed a propeller attachment for one of his 3D printable Strandbeests to do this, but [Eric] wanted to take it a step further. He’s designed a more functional wind turbine that sits on top of the Strandbeest, allowing wind from any direction to cause it to walk.

What we really love about [Eric's] Instructable is that he’s gone through the entire design process, showing how he learned what he needed to know (he doesn’t have any kind of engineering background), and how he broke it down into smaller chunks to be more manageable. Just goes to show if you set your mind to something — you can do it!


Filed under: 3d Printer hacks

Tin Spider is 13-foot Rideable Strandbeest

$
0
0

Arguably our best find at Bay Area Maker Faire this year was the Tin Spider built by [Scott Parenteau]. He constructed the 13-foot tall vehicle to take with him on his very first trip to Burning Man back in 2012. There’s very little information available online so we were excited that [Scott] spent some time speaking with us on Saturday.

The Tin Spider was inspired by the work of two inventors: [Theo Jansen] and [Buckminster Fuller]. The latter is known for his work with geodesic domes which makes up the cockpit of this vehicle. The former is the creator of Strandbeest, a legged kinetic sculpture well-known by our regular readers.

DSC_0775 Chain drive for one side of legs Leg Details - 4 sets of 3

The dome has changed quite a bit since this 2012 video was recorded. [Scott] added an elevator which drops the pilot’s chair down to ground level — replacing the single-column ladder of the original build. Acrylic panels have also been added to increase the pilot’s visibility. [Scott] tells us that it breaks down into manageable parts and can be easily transported on a flatbed truck. The setup process can occupy almost a full day but is greatly simplified if assembled on very level ground.

The Robotic House

DSC_0788 Roll adjustment gearing Bracket Holding Robotic House Gear and Sprocket Assembly DSC_0786

As if that wasn’t enough, [Scott] was showing off a second major build as well. His Robotic house is inspired by [Buckminster Fuller’s] ideas of efficient, automated, and easy to clean living spaces. Unfortunately we didn’t photograph the sparse insides, but there is very little to see. The back wall is a flat panel that can be folded down into seating, and the floor is a drain assembly for showering and cleaning the module. But don’t forget, this is robotic. Enter the pod and [Scott’s] fabricated gearing will rotate the it so you are laying flat. There is even some roll control to ensure this 2-person unit doesn’t cause you to sleep on top of your companion. The Robot House is demonstrated in the second portion of our video above.


Filed under: Featured, robots hacks

Drill Powered Scooter Walks With Legs

$
0
0

[Izzy Swan] is a popular wood working YouTuber who recently fell in love with [Theo Jansen’s] kinetic art — the Strandbeest. Naturally, he had to make his own; but with his own flare of course.

If’ you’re not familiar, [Theo Jansen’s] Strandbeest is a walking kinetic sculpture, powered by wind. It’s inspired a Hamster Ball powered Strandbeest, some nice 3D printed ones, and even a paper craft version! Mechanically, it’s quite a marvel — his TED talk about them is fantastic.

When [Izzy] saw all those legs moving, he knew he had to recreate it — so he came up with this two legged version that pushes him around — kind of like a tricycle, but the back wheels are… legs? It’s an oddity for sure, but an impressive feat nonetheless. Not to mention he’s powering the whole thing using a little cordless drill…

Despite it looking like machined aluminum, it is in fact made of wood, though it does feature a metal gearbox using worm gears to transfer torque from the drill. We want to see a Segway version of this… we might have to make use of the laser cutter in the office…

[Thanks for the awesome tip Uminded!]


Filed under: transportation hacks

Sphero Riding Strandbeest Is A Robot With An Exoskeleton

$
0
0

[Theo Jansen] makes awesome things called Strandbeests; wind-driven automatons that roam beaches and art galleries. It has long been one of our favorite mechanisms. Newer, but also a favorite is the Sphero smartphone controlled orb. The combination of the two is epic!

You may remember seeing Sphero used to create a tiny BB8 replica. Inside the orb is a tiny robot capable of rolling itself hamster-wheel-style in any direction. It’s a rather powerful bot and that makes Sphero fast. The high RPM is what makes this hack possible. Sphero spins rapidly while perched on some rollerblade wheels. Gearing converts this to the rolling motion of the Strandbeest.

sphero-strandbeest strandebeest-sphero-thumb

The original concept was posted a year ago but it was just now brought to our attention by [fhareide]  who is working on his own smaller Strandbeest driven by a Sphero. Since there are no assembly details on the original posting, you can follow along with [fhareide’s] documentation in order to complete your own build. So far [fhareide] imported the STL model into Autodesk Inventor, printed out one set of gears to insure the printer resolution could handle it, and assembled one set of legs.
We think of this as a kind of exoskeleton for a Sphero. We’ll keep an eye on this through the assembly, testing the drive mechanism and then the point where the whole thing becomes self-aware and either runs away to hide or terminates him.


Filed under: robots hacks

Hackaday Links: September 27, 2015

$
0
0

Many moons ago, [Joe Grand] built an adapter that turns Atari 2600 joysticks to USB controllers. Now it’s open source.

Hackaday Overlord [Matt] is holding an SMT and BGA soldering workshop in San Francisco on October 4th. Teaching BGA soldering? Yes! He made a board where the BGA balls are connected to LEDs. Very, very clever.

Our ‘ol friend [Jeremey Cook] built a strandbeest out of MDF. It’s huge, heavy, about the size of a small car, and it doesn’t work. [Jeremy] has built beests before, but these were relatively small. The big MDF beest is having some problems with friction, and a tendency to shear along the joints. If anyone wants to fix this beest, give [Jeremy] a ring.

Everyone loves the Teensy, and [Paul] has released his latest design iteration. The Teensy 3.2 isn’t that much different from the Teensy 3.1; the bootloader has changed and now USB D+ and D- lines are broken out. Other than that, it’s just the latest iteration of the popular Teensy platform.

The DyIO is a pretty neat robotics controller, a semifinalist for the Hackaday Prize, and now a Kickstarter. The big win of the Kickstarter is an electronics board (with WiFi) that is able to control 24 servos for all your robotics needs.

[pighixxx] does illustrations of pinouts for popular electronics platforms. Everyone needs a hobby, I guess. He recently put together an illustration of the ESP8266. Neat stuff is hidden deep in this site.

You would not believe how much engineering goes into making snake oil. And then you need to do certifications!

[David] identified a problem, created a solution, got a patent, and is now manufacturing a product. The only problem is the name.


Filed under: Hackaday Columns, Hackaday links

Motorized Strandbeest is Remote Controlled and Awesome

$
0
0

If you’ve never seen a Strandbeest before, you’re going to want to watch the video after the break. Invented by [Theo Jansen], a Strandbeest is a kinematic work of art. An eight legged structure that walks around under wind power — or if you’re clever, an Arduino and some motors.

For a weekend project, [Remet0n] decided to motorize a toy version of the Strandbeest, and make it remote-controlled. The toy is normally powered by a propeller spun by the wind — making it very easy to replace with motors. You can pick them up for under $10 on eBay.

Using an Arduino Nano, two small 3V motors , a wireless chip (NRF24L01) and a L9110 H-bridge, he was able to create this awesome little remote-controlled device:

As far as remote-controlled Strandbeests go though, we love this Sphero controlled Strandbeest — I mean, who even thinks about coming up with something like that? Maybe I should make one for my Sphero…


Filed under: Arduino Hacks

Strandmaus, Small R/C Strandbeest

$
0
0

[Jeremy Cook] has been playing around with strandbeests for a while, but never had one that walked until he put a motor on it and made it R/C controlled.

These remote controlled strandbeests can’t be too heavy or they have trouble moving. He didn’t want to get too complicated, either. [Jeremy] decided his first idea – hacking a cheap R/C car – wouldn’t work. The motors and AA batteries in these cars are just too heavy. Then he realized he had a broken quadcopter lying around. The motors were all burnt out, but the battery, controller, and driver board still works. On a hunch, he hooked up beefier motors to the front and left rotor control, and found that it worked just fine.

The rest of the work was just coupling it to the mechanism. The mechanism is made of wood and metal tubes. [Jeremy] found that the strandmaus had a tendency to fall down. He figures that’s why the original strandbeests had so many legs.

For his next iteration he wants to try to make it more stable, but for now he’s just having fun seeing his little legged contraption scoot around the floor. Video after the break.


Filed under: robots hacks

A Strandbeest Bicycle

$
0
0

“If you’re asking ‘why,’ you don’t get it.” So said [JP] when he told us about his strandbeest bicycle build. After all, who in their right mind would graft a complex multi-leg mechanical walking mechanism to the rear end of a perfectly good bicycle? But to expand on his sentiment, to not understand his creation is to miss the whole essence of our movement. Sometimes you just have to make something, because you can.

3D printed strandbeest bike proof of concept
3D printed strandbeest bike proof of concept

If you aren’t familiar with the strandbeest, it is the creation of Dutch artist [Theo Jansen]. Complex skeletal walking machines powered by the wind, that in the case of [Jansen]’s machines autonomously roam the beaches of the Netherlands. Hence the name, from Dutch: “Beach beast”.

[JP]’s strandbeest bike came together over 8 months of hard work. It started with a conceptual CAD design and 3D print, and progressed through many iterations of fine-tuning the over 400 parts required to put four legs on the back of a bicycle frame. It’s an impressive achievement and it is fully rideable, though we suspect we won’t be seeing it at the Tour de France any time soon.

He’s posted several videos of the bike in action, you can see one of them below the break.

The strandbeest seems to exert a fascination on the world of hackers and makers, we’ve covered a great many projects inspired by it. Just a selection are this remote controlled example, a huge spider-like rideable machine, or at the other end of the scale a papercraft strandbeest.

 


Filed under: transportation hacks

Strandbeest Not Fooling Anyone — We See Right Through It

$
0
0

This Strandbeest is ready for the security line at a security-conscious high school. Like see-though backpacks, its clear polycarbonate parts let you see everything that goes into the quirky locomotion mechanism. Despite having multiple legs, if you analyze the movement of a Strandbeest it actually moves like a wheel.

For us, it’s the narrated fabrication video found below that makes this build really interesting. Hackaday alum [Jeremy Cook] has been building different versions of [Theo Jansen’s] Strandbeest for years now. Strandmaus was a small walker controlled by a tiny quadcopter, and MountainBeest was a huge (and heavy) undertaking. Both were made out of wood. This time around [Jeremy] ordered his polycarbonate parts already cut to match his design. But it’s hardly a walk on the beach to make his way to final assembly.

The holes to accept the hardware weren’t quite large enough and he had to ream them out to bring everything together. We enjoyed seeing him build a jig to hold the spacers for reaming. And his tip on using an offset roll pin to secure the drive gear to the motor shaft is something we’ll keep in mind.

In the end, things don’t go well. He had machined out a motor coupling and it ends up being too weak for the torque driving the legs. Having grown up watching [Norm Abram] build furniture (and houses) without a single blown cut or torn-out end grain this is a nice dose of reality. It’s not how perfect you can be with each step, it’s how able you are to foresee problems and correct them when encountered.


Filed under: robots hacks

Watch the ClearWalker Light Up and Dip Its Toes

$
0
0

[Jeremy Cook]’s latest take on the Strandbeest, the ClearWalker, is ready to roll! He’s been at work on this project for a while, and walks us through the electronics and control system as well as final assembly tweaks. The ClearWalker is fully controllable and includes a pan and tilt camera as well as programmable LED segments, and even a tail.

When we last saw [Jeremy] at work on this design, it wasn’t yet functional. He showed us all the important design and assembly details that went into creating a motorized polycarbonate version of [Theo Jansen’s] classic Strandbeest design; there’s far more to the process than simply scaling parts up or down. Happily, [Jeremy] is able to show off the crystal clear beauty in his photo gallery as well as a new video, embedded below.

Any incarnation of the Strandbeest is fascinating to watch, and it’s even better seeing different takes on the concept, even (or especially) ones as unconventional as the hybrid Strandbeest Bicycle.

 


Filed under: robots hacks

Hackaday Prize Entry: Octo, The Robotic Walker

$
0
0

Walkers like the Strandbeest are favorites due in part to their smooth design and fluid motion, but [Leandro] is going a slightly different way with Octo, an octopodal platform for exploring rough terrain. Octo is based on the Klann linkage which was developed in 1994 and intended to act as an alternative to wheels because of its ability to deal with rough terrain. [Leandro] made a small proof of concept out of soldered brass and liked the results. The next version will be larger, made out of aluminum and steel, and capable of carrying a payload.

The Strandbeest and Octo have a lot in common but differ in a few significant ways. Jansen’s linkage (which the Strandbeest uses) uses eight links per leg and requires relatively flat terrain. The Klann linkage used by Octo needs only six links per leg, and has the ability to deal with rougher ground.

[Leandro] didn’t just cut some parts out from a file found online; the brass proof of concept was drawn up based on an animation of a Klann linkage. For the next version, [Leandro] used a simulator to determine an optimal linkage design, aiming for one with a gait that wasn’t too flat, and maximized vertical rise of the leg to aid in clearing obstacles.

We’ve seen the Klann linkage before in a LEGO Spider-bot. We’re delighted to see [Leandro]’s Octo in the ring for the Wheels, wings, and walkers category of The Hackaday Prize.


Filed under: robots hacks, The Hackaday Prize

Explore Venus with a Strandbeest Rover

$
0
0

There’s a little problem with sending drones to Venus: it’s too hostile for electronics; the temperature averages 867 °F and the pressure at sea level is 90 atmospheres. The world duration record is 2 hours and 7 minutes, courtesy of Russia’s Venera 13 probe. To tackle the problem, JPL has created a concept for AREE, a mechanical robot designed to survive in that environment.

AREE consists of a Strandbeest configuration of multiple legs with a monster fan propelling it, and one can imagine it creeping over the Venusian landscape. While its propulsion system might be handled by the Strandbeest mechanism, it will still have to navigate and transmit data. We’re not sure how a mechanical radio wave might work–maybe like those propeller arrow-cutters that [Dain of the Iron Hills] busts out in movie version of the Hobbit? Chemical rockets that somehow don’t spontaneously ignite? Or maybe it can just “transfer all energy to life support” and AC the heck out of the radio.

We’re space nerds here at Hackaday–check out our piece about NASA employees’ talks at the 2016 Hackaday Superconference and our extracurricular tour of JPL.

[Image: NASA. Via IEEE Spectrum, thanks, Levi!]


Filed under: robots hacks

See This Slick RC Strandbeest Zip Around

$
0
0
Bevel gears used to mount motors vertically.

Theo Jansen’s Strandbeest design is a favorite and for good reason; the gliding gait is mesmerizing and this RC version by [tosjduenfs] is wonderful to behold. Back in 2015 the project first appeared on Thingiverse, and was quietly updated last year with a zip file containing the full assembly details.

All Strandbeest projects — especially steerable ones — are notable because building one is never a matter of simply scaling parts up or down. For one thing, the classic Strandbeest design doesn’t provide any means of steering. Also, while motorizing the system is simple in concept it’s less so in practice; there’s no obvious or convenient spot to actually mount a motor in a Strandbeest. In this project bevel gears are used to mount the motors vertically in a central area, and the left and right sides are driven independently like a tank. A motor driver that accepts RC signals allows the use of an off the shelf RC transmitter and receiver to control the unit. There is a wonderful video of the machine zipping around smoothly, embedded below.

One of the shortcomings of a Strandbeest is that it requires fairly even ground. The legs don’t lift very high, which limits it to flat terrain. That limitation didn’t stop the 13-foot rideable Tin Spider, but one alternative is the Klann Linkage used by Project Octo, a robotic platform intended for rough terrain.

Stepper Motor And Key Fob Controlled Strandbeest

$
0
0

We never tire of watching Strandbeests with their multitude of legs walking around, and especially enjoy the RC ones. [Jeremy Cook], prolific Strandbeest maker, just made one by motorizing and adding remote control to a small, plastic wind-powered kit.

We’ve seen a Strandbeest kit conversion like this before, such as this DC motor one but it’s always interesting to see how it can be done differently. In [Jeremy’s], he’s gone with two inexpensive $2.00 stepper motors. The RC is done using a keyfob transmitter with a receiver board wired into an Arduino Nano’s analog pins. He tried driving it directly off the LiPo batteries but had issues which he solved by adding a 5-volt regulator. Check out his build and the modified Strandbeest walking around in the video below.

As we said, [Jeremy’s] a prolific Strandbeest maker. We’ve enjoyed showing his larger, clear polycarbonate ClearWalker here before as well as his smaller Strandmaus in which he adapted quadcopter parts for the RC.

Viewing all 35 articles
Browse latest View live


<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>